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Abstract

Estimating the proportion of an attribute present in a population can be

challenging when the population is stratified by lots produced by a common

manufacturing process and the available data arise from both random and

convenience samples. Moreover, all the lots may not have been sampled.

This paper proposes a Bayesian methodology for making inferences about a

proportion that properly accounts for the potential bias of the convenience

samples, the stratification by lots and the fact that not all the lots have

been sampled. The methodology is illustrated with a simulated population;

however, the solution was motivated by a similar, but proprietary, production

problem.
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1 Introduction

Populations are surveilled to provide confidence that they are in a good state

of health. For example, missile and weapon stockpiles are surveilled to as-

sess that they will perform when necessary. Through surveillance, it may be

observed or determined through analysis that some sampled systems have

a component which has an attribute (either present or absent). A natural

question arises as to what proportion of the population has components with

the attribute present. When the population is large and the sampling is com-

pletely random, a binomial distribution provides a good approximation for

the observed number of systems with the attribute present. In this situation,

estimating the proportion is a simple task; the maximum likelihood estimate

is the observed proportion.

In this paper, however, we consider a more complicated situation which

requires a rather sophisticated analysis. Suppose that the components in

question have been manufactured in small lots of varying sizes by a common

manufacturing process. Not all of the manufactured components end up in

manufactured systems. Some are used for monitoring quality control and

others are designated for various ongoing studies. We refer to such compo-

nents as arising from convenience samples because it is not known how or

why they are chosen for these studies. Besides these convenience samples,

the manufactured systems are randomly sampled from the population over

time.

While these convenience samples have been chosen stochastically, they

may not have been chosen completely randomly, or may have been chosen for

certain characteristics particular to the studies which may or may not related
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to the attribute. Consider the situation where a quality control sample of

the lot is taken and inspected. Those components which are “interesting”

are kept for further study; the “uninteresting” components are released and

are built up into systems. If the attribute is related to the “interesting”

components (i.e., a higher proportion of “interesting” components have the

attribute present than that for the “uninteresting” components), then these

samples provide a biased estimate of the proportion of attribute present.

Ultimately, we are concerned with estimating the proportion p∗ of the

current population which have components with the attribute present. A

novel aspect that we consider in this paper is that there are convenience

and/or random samples available from some but not all of the lots. The

challenge is to appropriately account for the potential bias in the convenience

samples, i.e., components with the attribute present may appear more often

in the convenience samples than by chance so that ignoring this bias would

lead to overestimating p∗. In this paper, we propose a statistical approach

to account for this potential bias.

This paper is organized as follows. First, we present an example moti-

vated by a proprietary manufacturing and production problem. We present

a statistical model for the population and for the data from the random and

convenience samples in Section 3. In Section 4, we consider a Bayesian ap-

proach to making inferences about the proportion with an attribute present

in the remaining population. We demonstrate the proposed approach with

the illustrative population in Section 5. Finally, we conclude with a discus-

sion.
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2 An Example

For illustration, consider a simulated population of 5000 components, made

up of 230 lots: 100 of size 10, 100 of size 25 and 30 of size 50. A con-

venience sample of 100 components was taken when the systems were first

manufactured. Subsequently, a random sample of size 50 was taken from the

remaining 4900 components. In total, 96 of the 230 lots have been sampled

– 18 lots have both random and convenience samples, 21 lots have only ran-

dom samples and 57 lots have only convenience samples. Table 1 presents

the population and sample data which include the lot sizes (N), the unknown

number of components with the attribute present (K), the convenience and

random sample sizes (nc and nr, respectively,) and the number of compo-

nents with the attribute present (yc and yr) in the convenience and random

samples, respectively. This population of 5000 has 513 components which

have the attribute present. For Case 1 in which the convenience sample is

somewhat biased, there are 16 and 6 components with the attribute present

in the convenience and random samples, respectively. Thus, about 10% of

the remaining population of 4850 components have the attribute present.

The proprietary problem, upon which this example is based, was estimated

to have had a much rarer occurrence of the attribute present. We have cho-

sen a population for this example with about a 10% occurrence rate for ease

of illustration.

Taking the data as representative of the population, an estimated propor-

tion of 22/150 or 14.7% (with a standard deviation of 2.9%) of the remaining

population of components having the attribute present might be proposed.

For Case 2 in which the convenience samples are even more biased, there
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are 24 and 3 components with the attribute present in the convenience and

random samples, respectively. Again, ignoring the bias of the convenience

samples, an estimated proportion of 27/150 or 18.0% (with a standard de-

viation of 3.1%) of the remaining population having components with the

attribute present would result. Consequently, properly accounting for such

biases is one of the key motivations for this paper.

3 Statistical Models for the Population and

Sampled Data

Before introducing the statistical models, we begin with some notation. The

finite population consists of M lots. Let the ith lot size be denoted by Ni and

the unknown number of systems in the ith lot with the attribute present be

denoted by Ki. If there is a convenience sample for the ith lot, its sample size

is nci and yci is the number of components in the convenience sample with

the attribute present. If there is a random sample for the ith lot, its sample

size is nri and yri is the number of components in the convenience sample

with the attribute present. Because the convenience sample is assumed to

be taken first, the ith lot size for the random sample is Nri = Ni − nci

and Kri = Ki − yci is the number of components with the attribute present

remaining in the ith lot after the convenience sample has been taken.

Next, we consider a model for the population. We assume that the num-

ber of components with the attribute present in the ith lot Ki to be dis-

tributed as binomial, where pi is the probability of a component having the
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attribute present in the ith lot, i.e.,

Ki ∼ Binomial(Ni, pi). (1)

The fact that the lots were produced by a common manufacturing process

means they are related but their tendencies for having a component with the

attribute present are possibly different. We express this by the pi being

exchangeable as follows:

pi ∼ Beta(a, b). (2)

(1) and (2) together constitute a hierarchical model.

Now we consider statistical models for the data. For the convenience sam-

ple data, we want to account for the potential bias of sampling too many or

too few components with the attribute present. This sampling mechanism is

an example of a non-ignorable selection procedure (Rubin (1976), Gelman et

al. (1995)) which must be accounted for in making inferences. Nonresponse

in survey sampling is an example of a non-ignorable selection procedure for

which that the probability that an individual responds depends on the in-

dividual’s value of the binary attribute of interest (Stasny (1991), Nandram

and Choi (2002)). By modeling the differential response probabilities, Stasny

(1991) and Nandram and Choi (2002) properly account for the potential bias

in the data from the respondents.

Similarly, we handle the potential bias in the convenience data through

modeling. To do this, we use the extended-hypergeometric distribution

(Harkness (1965)) for yci which is denoted by

yci ∼ Extended − hypergeometric(Ki, Ni − Ki, nci, θ). (3)

6



The extended-hypergeometric probability mass function has the following

form:

P (yci = y) =




nci

y








Ni − nci

Ki − y



 θy

∑min(nci,Ki)
j=max(0,nci−Ni+Ki)




nci

j








Ni − nci

Ki − j



 θj

,

for y = max(0, nci−Ni +Ki), . . ., min(nci, Ki). When the biasing parameter

θ is equal to one, the extended-hypergeometric reduces to the hypergeometric

which arises from a completely random sample; i.e., there is no biasing. When

θ is greater than one, the sampling favors components with the attribute

present.

Table 2 demonstrates that for θ > 1, the probabilities for sampling larger

number of components with the attribute present are higher. This table

considers the case when the lot size is 10, half the components have the

attribute present and the lot sample size is 3. Note that a common θ is

assumed for the convenience sampling for all lots in this table.

The extended-hypergeometric distribution can be simulated from using

the following procedure. Suppose that each component in a given lot say of

size Ni is determined randomly to be included in the sample. Each compo-

nent with the attribute present is included with probability π1; each com-

ponent with the attribute absent is included with probability π0. Note that

the number of components included in the sample is random, as described

thus far. To obtain a sample of size ni, one has to visualize performing

this procedure until the realized sample size is ni. For such a sample, yi,

the number of components with the attribute present in the sample has the
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extended-hypergeometric distribution, where

θ =
π1(1 − π0)

π0(1 − π1)
,

is the odds ratio. While this may not be the exact stochastic mechanism of

the convenience sampling, the probability mass function reflects a biasing of

the components with the attribute present and serves as a good approxima-

tion. See Johnson and Kotz (1969) and their references for further discussion

of the extended-hypergeometric distribution.

For the random sample data, the yri follow a hypergeometric distribution

denoted by

yri ∼ Hypergeometric(Kri, Nri − Kri, nri). (4)

Because the lot sizes are small, binomial approximations are not appropriate.

Note that analyzing only the random sampled data is problematic because

some lots had convenience samples taken from them while others did not and

some lots had random samples taken from while others did not. Thus, there

are lots for which either convenience samples or random samples were taken

but not both, those for which both samples were taken and those which were

not sampled. Consequently, the random samples (possibly after convenience

samples were taken) alone are biased with respect to (2), the model for the

lots before any sampling (both convenience and random) was done. The

modeling above, however, properly accounts for the pattern of convenience

and random sampling.
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4 Bayesian Approach for Inference

To provide inference about p∗, we propose using a Bayesian approach. Bayesian

inference provides uncertainty about the unknowns η = (p1, . . . , pM , K1, . . . , KM , a, b, θ)

through their joint posterior distribution. For this problem, we only need to

specify a prior distribution for a, b and θ because the Ki and pi are specified

by (1) and (2), respectively, and the likelihood is given by (3) and (4) for the

convenience and random data, respectively.

We specify the following priors:

• p̃ = a
a+b ∼ Beta(ã, b̃)

• ν = a + b ∼ Gamma(c, d)

• θ ∼ Lognormal(t0, t1)

Choices of ã, b̃, c, d, t0, t1 can be made so that the prior distributions are rela-

tively flat and do not drive the results. By letting t0 = 0, the median of the θ

prior is 1 in which case the convenience sample data are not biased. We prefer

the (p̃, ν) parameterization for the beta parameters because E(pi|p̃, ν) = p̃.

To summarize, the unnormalized posterior density is

π(p̃, ν, θ, p1, . . . , pM , K1, . . . , KM |yc1, . . . , ycM , yr1, . . . , yrM) =

p̃a−1(1 − p̃)b−1νc−1 exp(−dν)(θ1)
−1φ

(
log θ − t0

t1

)

×
M∏

i=1

{
Γ(ν)

Γ(νp̃)Γ(ν(1 − p̃))
pνp̃−1

i (1 − pi)
ν(1−p̃)−1
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×
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i (1 − pi)
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To make the desired inference, we apply Bayes Theorem to obtain the

joint posterior distribution of η. Because there are 2M+3 parameters (M

p’s, M K’s, p̃, ν, θ), we employ an appropriate Markov Chain Monte Carlo

(MCMC) method to sample from the joint posterior distribution (Gelman

et al., 1995) from which inference about the unknown parameters of inter-

est Ki can be made. For example, the Metropolis-Hastings algorithm (Chib

and Greenberg (1995)) combined with Gibbs sampling (Casella and George

(1992)) provide a general way to sample from the joint posterior distribu-

tion. WinBUGS (Spiegelhalter, Thomas, and Best (2000)) was not used

because it cannot handle the extended-hypergeometric and hypergeometric

distributions. For both cases in the example (Section 2), we implemented the

MCMC method using the YADAS statistical modeling environment (Graves,

2001, 2003a,b). The MCMC algorithms used were based on the variable-at-

a-time Metropolis–Hastings algorithm, which does not require the user to be

able to evaluate or sample from full conditional distributions of one or more

of the parameters given the others (these full conditional distributions are

intractable in this problem). In variable-at-a-time Metropolis–Hastings algo-
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rithms, one loops over the unknown parameters, proposing a new value of one

of the parameters, and deciding whether to accept the new value or remain

in place with probability given by the unnormalized posterior distribution

at the new value divided by the unnormalized posterior distribution at the

old value. In this problem, the posterior draws generated using have high

autocorrelation, but saving only one of every twenty iterations is enough to

provide adequately independent samples. Another algorithm, based on con-

tinuous approximations to the discretely supported Ki, is a bit more efficient

and discussed in Graves (2006).

Once we obtain draws from the joint posterior distribution of the Ki, we

can provide inference about the remaining components in the population as

follows. Let the current ith lot size be denoted by N∗
i (usually N∗

i = Ni−nci−

nri). Let K∗
i = Ki−yci−yri, define p∗ =

∑
K∗

i /
∑

N∗
i and report the posterior

distribution of p∗. We obtain draws from the posterior distribution on the

number of components remaining in a lot with the attribute present (K∗
i )

and the overall attribute proportion (p∗) of components with the attribute

present remaining in the population.

Finally, because some lots have both random and convenience data, there

is information about the biasing parameter θ which can be assessed through

the posterior distribution for θ.

5 Example Revisited

The Bayesian analysis described in the previous section was performed on the

convenience and random samples from the simulated population presented
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in the discussion. Note that for this population, the pi are distributed as

Beta(1, 9) whose 0.025, 0.500 and 0.975 quantiles are 0.003, 0.074, 0.336,

respectively. Also, for the Case 1 and Case 2 convenience samples, θ = 2 and

θ = 5, respectively. The following priors were used in the analysis: a
a+b ∼

Beta(0.3, 1.7), a + b ∼ Gamma(2, 5), log θ ∼ Normal(0, 1). In the practical

application in which we applied these methods, the prior parameters for a,

b to attain specified quantiles of the prior distribution of pi. These quantiles

were obtained from historical data on similar features. (In particular, the

priors were not chosen with the goal of being noninformative.) The simulated

example, of course, has no such historical data, and we have used a relatively

noninformative prior for pi: the variance is about 2.33 times the mean(1-

mean); a pure beta prior with this property would be weighted as strongly

as 1.33 data points. Results with inevitably be somewhat sensitive to the

prior on θ because the data has little information about this parameter: we

included the parameter in our analysis not so we could accurately estimate

θ but so we could allow for the possibility that the sampling mechanism was

not equivalent to random sampling, and increase our uncertainty accordingly.

The prior for θ implies that 95% of its mass is between about 1/7 and 7, and

if the convenience samples are small, according to the discussion in Section

3, the prior assigns probability .95 to the event that π1/π0 is between about

1/7 and 7. This argues that the prior for θ is also fairly noninformative if one

believes, as we did, that the amount of biasing is likely to be considerably

less than π1/π0 = 7±1. A prior for log θ symmetric about zero is equally

appropriate for situations where the sampling mechanism is less likely to

*** talk about diagnostics for both cases ***
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For Case 1, see the resulting posteriors obtained for a
a+b , a + b, θ and p∗

in Figure 1. The posterior 0.05, 0.50, 0.95 quantiles for p∗ are 0.073, 0.130,

0.209, respectively. Thus, an estimate for p∗ using the median of the posterior

is 0.130 compared with the true p∗ of 0.101. Note that the point estimate is

closer to the fraction of the random samples with the feature (6/50 = 0.12)

than the fraction of the convenience samples (16/100 = 0.16). Posterior

medians for the pi are included in Table 3. This table collapses all lots with

the same data pattern into a single row. For each observed (N,nc, yc, nr, yr),

the number of lots with that data pattern is listed; also, the pi posterior

medians are presented from analyses when θ is estimated as well as when

the potential biasing is ignored by fixing θ to equal one. Note that when

several lots have the same data pattern, their median pi were averaged. The

posterior for θ is not wildly different from the prior: the posterior mean and

standard deviation of log θ are 0.29 and 0.54, as compared to zero and one.

This means that the data weakly suggest that some biasing is present.

When θ = 1 is assumed, i.e., the convenience samples are not biased,

larger estimates of p∗ result; the posterior 0.05, 0.50, 0.95 quantiles for p∗ are

0.101, 0.146, and 0.197, respectively, which illustrate the impact of ignoring

the biasing. The point estimate of 0.146, then, is very close to the naive

estimate of 22/150 = 0.147. Table 3 also shows how the posterior medians

of the individual pi’s have increased.

For Case 2, see the resulting posteriors obtained for a
a+b , a + b, θ and

p∗ in Figure 2. The posterior 0.05, 0.50, 0.95 quantiles for p∗ are 0.053,

0.096, and 0.168, respectively. Thus, an estimate for p∗ using the median of

the posterior is 0.096 compared with the true p∗ of 0.101. When θ = 1 is
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assumed, the posterior 0.05, 0.50, 0.95 quantiles for p∗ are 0.138, 0.185, and

0.239, respectively, which illustrate the seriousness of ignoring the substantial

biasing in this case. Table 4 presents the data patterns (N,nc, yc, nr, yr) and

pi posterior medians for this case.

6 Discussion

Estimating a proportion in a population can be challenging when the pop-

ulation is stratified by lots produced by a common manufacturing process

and the available data arise from both random and convenience samples.

Moreover, all the lots may not have been sampled. In this paper, statistical

models have been proposed for the population which reflect the stratification

by lots and for the small samples taken from small lots which, in the case

of the convenience samples, are biased. We have shown how a Bayesian ap-

proach appropriately handles the desired inferences, especially for providing

an estimate of the proportion in the remaining population.

There are a number of topics for future research. These include account-

ing for the amount of biasing in the convenience samples varying by lot and

handling continuous rather than binary attributes of interest. Also, how to

use this modeling approach to make recommendations for additional random

sampling of the remaining population is of interest. The first two topics

require appropriate modeling changes. This paper provides a basis for the

third topic: the need to analyze the resulting data. A Bayesian approach is

an obvious choice.
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Figure 1: Case 1 posteriors for a
a+b , a+ b, θ and p∗ when θ is estimated. The

priors (dotted) are overlaid in the first three plots.
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Figure 2: Case 2 posteriors for a
a+b , a+ b, θ and p∗ when θ is estimated. The

priors (dotted) are overlaid in the first three plots.
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Table 1: Example Population and Sample Data
Case 1 Case 2 Case 1 Case 2

Lot N K nc nr yc yr yc yr Lot N K nc nr yc yr yc yr
1 10 0 0 0 0 0 0 0 61 10 2 0 0 0 0 0 0
2 10 0 0 0 0 0 0 0 62 10 1 0 0 0 0 0 0
3 10 4 0 0 0 0 0 0 63 10 0 0 0 0 0 0 0
4 10 3 0 1 0 0 0 0 64 10 1 0 0 0 0 0 0
5 10 3 1 0 1 0 1 0 65 10 0 0 0 0 0 0 0
6 10 0 0 0 0 0 0 0 66 10 2 0 1 0 0 0 0
7 10 0 0 0 0 0 0 0 67 10 5 0 0 0 0 0 0
8 10 1 0 0 0 0 0 0 68 10 0 0 0 0 0 0 0
9 10 3 0 0 0 0 0 0 69 10 1 0 0 0 0 0 0

10 10 1 0 0 0 0 0 0 70 10 0 0 0 0 0 0 0
11 10 0 0 0 0 0 0 0 71 10 0 0 0 0 0 0 0
12 10 1 2 0 0 0 1 0 72 10 0 0 0 0 0 0 0
13 10 3 0 0 0 0 0 0 73 10 2 0 0 0 0 0 0
14 10 3 0 0 0 0 0 0 74 10 2 0 0 0 0 0 0
15 10 2 0 0 0 0 0 0 75 10 3 1 0 0 0 1 0
16 10 0 0 0 0 0 0 0 76 10 0 0 2 0 0 0 0
17 10 3 0 0 0 0 0 0 77 10 0 0 0 0 0 0 0
18 10 1 0 0 0 0 0 0 78 10 1 0 0 0 0 0 0
19 10 0 1 0 0 0 0 0 79 10 0 1 0 0 0 0 0
20 10 0 0 0 0 0 0 0 80 10 1 0 0 0 0 0 0
21 10 1 0 0 0 0 0 0 81 10 3 0 0 0 0 0 0
22 10 0 1 0 0 0 0 0 82 10 3 1 1 0 1 1 0
23 10 6 0 0 0 0 0 0 83 10 0 0 0 0 0 0 0
24 10 2 0 0 0 0 0 0 84 10 0 0 0 0 0 0 0
25 10 0 0 0 0 0 0 0 85 10 1 0 0 0 0 0 0
26 10 0 0 0 0 0 0 0 86 10 2 0 0 0 0 0 0
27 10 0 0 0 0 0 0 0 87 10 1 1 0 0 0 0 0
28 10 2 0 0 0 0 0 0 88 10 0 0 0 0 0 0 0
29 10 5 0 0 0 0 0 0 89 10 3 1 1 1 1 0 0
30 10 1 0 0 0 0 0 0 90 10 1 0 0 0 0 0 0
31 10 0 0 0 0 0 0 0 91 10 0 0 0 0 0 0 0
32 10 0 0 0 0 0 0 0 92 10 0 0 0 0 0 0 0
33 10 0 0 0 0 0 0 0 93 10 2 0 0 0 0 0 0
34 10 1 0 0 0 0 0 0 94 10 1 0 0 0 0 0 0
35 10 0 0 0 0 0 0 0 95 10 0 0 1 0 0 0 0
36 10 0 0 0 0 0 0 0 96 10 1 0 0 0 0 0 0
37 10 1 0 0 0 0 0 0 97 10 0 0 0 0 0 0 0
38 10 3 0 0 0 0 0 0 98 10 1 2 0 1 0 0 0
39 10 1 0 0 0 0 0 0 99 10 3 0 0 0 0 0 0
40 10 0 0 0 0 0 0 0 100 10 1 0 0 0 0 0 0
41 10 0 0 0 0 0 0 0 101 25 3 1 0 0 0 0 0
42 10 0 0 0 0 0 0 0 102 25 1 1 0 0 0 0 0
43 10 1 0 0 0 0 0 0 103 25 1 0 1 0 0 0 0
44 10 2 0 0 0 0 0 0 104 25 0 0 0 0 0 0 0
45 10 0 1 0 0 0 0 0 105 25 4 0 0 0 0 0 0
46 10 1 0 0 0 0 0 0 106 25 7 1 0 1 0 1 0
47 10 1 0 0 0 0 0 0 107 25 0 1 0 0 0 0 0
48 10 1 0 1 0 0 0 0 108 25 14 0 0 0 0 0 0
49 10 1 1 0 1 0 0 0 109 25 0 1 0 0 0 0 0
50 10 3 0 0 0 0 0 0 110 25 2 0 0 0 0 0 0
51 10 0 1 0 0 0 0 0 111 25 1 1 0 0 0 0 0
52 10 1 0 0 0 0 0 0 112 25 1 1 1 0 0 0 0
53 10 1 1 0 0 0 0 0 113 25 5 1 0 1 0 0 0
54 10 1 0 0 0 0 0 0 114 25 1 1 0 0 0 0 0
55 10 0 0 0 0 0 0 0 115 25 3 1 0 1 0 1 0
56 10 1 1 0 0 0 0 0 116 25 1 1 0 0 0 0 0
57 10 1 0 0 0 0 0 0 117 25 5 0 0 0 0 0 0
58 10 0 0 0 0 0 0 0 118 25 6 0 0 0 0 0 0
59 10 4 0 1 0 0 0 0 119 25 4 2 0 0 0 1 0
60 10 0 0 0 0 0 0 0 120 25 1 0 0 0 0 0 0
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Table 1 (Continued): Example Population and Sample Data
Case 1 Case 2 Case 1 Case 2

Lot N K nc nr yc yr yc yr Lot N K nc nr yc yr yc yr
121 25 2 1 0 0 0 0 0 181 25 2 0 0 0 0 0 0
122 25 0 0 0 0 0 0 0 182 25 1 0 0 0 0 0 0
123 25 0 2 0 0 0 0 0 183 25 0 0 0 0 0 0 0
124 25 1 1 1 0 0 1 0 184 25 4 0 0 0 0 0 0
125 25 0 1 1 0 0 0 0 185 25 1 0 0 0 0 0 0
126 25 0 0 0 0 0 0 0 186 25 0 1 1 0 0 0 0
127 25 3 0 0 0 0 0 0 187 25 3 0 0 0 0 0 0
128 25 1 0 0 0 0 0 0 188 25 1 0 0 0 0 0 0
129 25 4 0 2 0 1 0 1 189 25 0 1 0 0 0 0 0
130 25 1 0 0 0 0 0 0 190 25 0 0 0 0 0 0 0
131 25 6 0 0 0 0 0 0 191 25 1 0 0 0 0 0 0
132 25 0 0 0 0 0 0 0 192 25 1 1 0 0 0 0 0
133 25 5 1 0 0 0 1 0 193 25 0 0 0 0 0 0 0
134 25 1 0 0 0 0 0 0 194 25 2 1 0 0 0 1 0
135 25 5 0 0 0 0 0 0 195 25 9 1 0 1 0 1 0
136 25 1 1 0 0 0 0 0 196 25 0 0 0 0 0 0 0
137 25 2 0 0 0 0 0 0 197 25 9 2 0 2 0 1 0
138 25 4 0 1 0 0 0 0 198 25 0 0 0 0 0 0 0
139 25 0 2 1 0 0 0 0 199 25 8 0 1 0 0 0 0
140 25 5 0 0 0 0 0 0 200 25 1 0 0 0 0 0 0
141 25 2 1 0 0 0 0 0 201 50 6 0 1 0 0 0 0
142 25 0 1 0 0 0 0 0 202 50 7 1 1 1 0 1 0
143 25 5 0 1 0 1 0 0 203 50 1 2 3 0 0 0 0
144 25 3 0 0 0 0 0 0 204 50 6 0 1 0 0 0 0
145 25 5 0 1 0 0 0 0 205 50 0 0 0 0 0 0 0
146 25 2 0 0 0 0 0 0 206 50 3 2 0 0 0 1 0
147 25 0 0 0 0 0 0 0 207 50 0 1 0 0 0 0 0
148 25 3 1 0 0 0 1 0 208 50 9 1 1 0 1 1 0
149 25 1 0 0 0 0 0 0 209 50 10 0 3 0 0 0 0
150 25 6 0 0 0 0 0 0 210 50 8 1 0 1 0 1 0
151 25 4 0 0 0 0 0 0 211 50 7 0 0 0 0 0 0
152 25 0 1 0 0 0 0 0 212 50 0 1 0 0 0 0 0
153 25 0 2 1 0 0 0 0 213 50 6 3 0 0 0 0 0
154 25 0 0 0 0 0 0 0 214 50 10 3 0 0 0 0 0
155 25 1 1 0 0 0 0 0 215 50 2 1 0 0 0 0 0
156 25 4 0 1 0 0 0 0 216 50 16 3 0 2 0 2 0
157 25 8 1 0 1 0 1 0 217 50 1 2 0 0 0 0 0
158 25 0 0 0 0 0 0 0 218 50 6 0 0 0 0 0 0
159 25 0 3 0 0 0 0 0 219 50 5 0 0 0 0 0 0
160 25 3 1 0 0 0 1 0 220 50 5 1 0 0 0 0 0
161 25 2 0 0 0 0 0 0 221 50 5 0 1 0 0 0 0
162 25 1 0 1 0 0 0 0 222 50 7 1 3 0 1 0 1
163 25 9 0 1 0 0 0 0 223 50 6 0 1 0 0 0 0
164 25 1 0 0 0 0 0 0 224 50 0 2 1 0 0 0 0
165 25 2 0 3 0 0 0 1 225 50 5 1 0 0 0 0 0
166 25 0 1 0 0 0 0 0 226 50 8 1 1 1 0 1 0
167 25 0 1 0 0 0 0 0 227 50 6 0 0 0 0 0 0
168 25 3 0 0 0 0 0 0 228 50 9 0 0 0 0 0 0
169 25 0 0 0 0 0 0 0 229 50 2 4 2 0 0 1 0
170 25 1 1 0 0 0 0 0 230 50 2 0 0 0 0 0 0
171 25 1 0 0 0 0 0 0
172 25 1 1 1 0 0 0 0
173 25 8 0 0 0 0 0 0
174 25 9 0 0 0 0 0 0
175 25 1 4 0 0 0 1 0
176 25 3 0 0 0 0 0 0
177 25 0 1 1 0 0 0 0
178 25 0 1 0 0 0 0 0
179 25 7 0 0 0 0 0 0
180 25 1 1 1 0 0 0 0
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Table 2: Extended-hypergeometric Probabilities for a lot with N = 10, K =
5, n = 3 (θ = 1 corresponds to hypergeometric probabilities arising from
completely random sampling)

θ
y 0.1 0.5 1.0 1.5 2.0 5.0
0 0.645 0.205 0.083 0.043 0.026 0.004
1 0.322 0.513 0.417 0.324 0.256 0.091
2 0.032 0.256 0.417 0.487 0.513 0.453
3 0.001 0.026 0.083 0.146 0.205 0.453
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Table 3: Case 1 Data Patterns and pi Posterior Medians
Pattern pi Posterior Median

N nc yc nr yr Count θ estimated θ = 1 fixed
50 4 0 2 0 1 0.033 0.049
50 2 0 3 0 1 0.040 0.055
25 4 0 0 0 1 0.043 0.059
50 3 0 0 0 2 0.048 0.066
25 3 0 0 0 1 0.049 0.067
25 2 0 1 0 2 0.050 0.067
50 2 0 1 0 1 0.051 0.067
50 0 0 3 0 1 0.053 0.068
25 0 0 3 0 1 0.054 0.067
25 2 0 0 0 2 0.057 0.078
10 2 0 0 0 1 0.059 0.074
25 1 0 1 0 7 0.060 0.075
50 2 0 0 0 2 0.060 0.078
10 0 0 2 0 1 0.062 0.073
25 1 0 0 0 23 0.068 0.088
10 1 0 0 0 9 0.069 0.088
50 1 0 0 0 5 0.070 0.088
50 0 0 1 0 4 0.071 0.089
10 0 0 1 0 5 0.072 0.088
25 0 0 1 0 7 0.072 0.088
10 0 0 0 0 79 0.087 0.105
25 0 0 0 0 48 0.087 0.105
50 0 0 0 0 7 0.088 0.105
50 1 0 3 1 1 0.155 0.166
10 2 1 0 0 1 0.191 0.211
10 1 0 1 1 1 0.197 0.214
50 1 0 1 1 1 0.198 0.21
50 1 1 1 0 2 0.198 0.21
25 0 0 2 1 1 0.200 0.21
10 1 1 0 0 2 0.232 0.248
25 1 1 0 0 5 0.232 0.247
50 1 1 0 0 1 0.235 0.244
25 0 0 1 1 1 0.242 0.253
50 3 2 0 0 1 0.274 0.302
25 2 2 0 0 1 0.330 0.348
10 1 1 1 1 1 0.338 0.342

5000 100 16 50 6 230
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Table 4: Case 2 Data Patterns and pi Posterior Medians
Pattern pi Posterior Median

N nc yc nr yr Count θ estimated θ = 1 fixed
50 2 0 3 0 1 0.050 0.115
50 3 0 0 0 2 0.050 0.13
25 3 0 0 0 1 0.052 0.13
50 2 0 1 0 1 0.055 0.129
25 2 0 1 0 2 0.056 0.13
50 2 0 0 0 1 0.058 0.139
25 2 0 0 0 1 0.060 0.14
10 2 0 0 0 1 0.061 0.141
10 1 0 1 0 1 0.064 0.139
25 1 0 1 0 6 0.064 0.14
50 0 0 3 0 1 0.065 0.13
25 1 0 0 0 20 0.067 0.153
50 1 0 0 0 5 0.067 0.153
10 1 0 0 0 9 0.068 0.152
10 0 0 2 0 1 0.071 0.14
25 0 0 1 0 8 0.075 0.153
10 0 0 1 0 5 0.076 0.152
50 0 0 1 0 4 0.076 0.153
10 0 0 0 0 79 0.081 0.166
25 0 0 0 0 48 0.081 0.166
50 0 0 0 0 7 0.081 0.167
50 4 1 2 0 1 0.083 0.165
25 4 1 0 0 1 0.095 0.187
50 1 0 3 1 1 0.111 0.187
50 2 1 0 0 1 0.113 0.22
25 2 1 0 0 2 0.116 0.22
10 2 1 0 0 1 0.120 0.218
50 1 1 1 0 3 0.125 0.219
25 1 1 1 0 1 0.127 0.219
10 1 1 1 0 1 0.128 0.218
25 0 0 3 1 1 0.129 0.207
50 1 1 0 0 1 0.131 0.239
25 1 1 0 0 8 0.133 0.238
10 1 1 0 0 2 0.136 0.237
25 0 0 2 1 1 0.138 0.218
50 3 2 0 0 1 0.153 0.273

5000 100 24 50 3 230
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